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Abstract
Mutation of distal-less homeobox 3 (DLX3) is responsible for human tricho-dento-osseous

syndrome (TDO) with amelogenesis imperfecta, indicating a crucial role of DLX3 in amelo-

genesis. However, the expression pattern of DLX3 and its specific function in amelogenesis

remain largely unknown. The aim of this study was to investigate the effects of DLX3 on

enamel matrix protein (EMP) genes. By immunohistochemistry assays of mouse tooth

germs, stronger immunostaining of DLX3 protein was identified in ameloblasts in the secre-

tory stage than in the pre-secretory and maturation stages, and the same pattern was found

for Dlx3mRNA using Realtime PCR. In a mouse ameloblast cell lineage, forced expression

of DLX3 up-regulated the expression of the EMP genes Amelx, Enam, Klk4, andOdam,

whereas knockdown of DLX3 down-regulated these four EMP genes. Further, bioinformat-

ics, chromatin immunoprecipitation, and luciferase assays revealed that DLX3 transacti-

vated Enam, Amelx, andOdam through direct binding to their enhancer regions.

Particularly, over-expression of mutant-DLX3 (c.571_574delGGGG, responsible for TDO)

inhibited the activation function of DLX3 on expression levels and promoter activities of the

Enam, Amelx, andOdam genes. Together, our data show that DLX3 promotes the expres-

sion of the EMP genes Amelx, Enam, Klk4, andOdam in amelogenesis, while mutant-DLX3

disrupts this regulatory function, thus providing insights into the molecular mechanisms un-

derlying the enamel defects of TDO disease.

Introduction
Mutation of distal-less homeobox 3 (DLX3) gene, a member of the distal-less homeodomain
family (DLX1-6), is responsible for a human autosomal-dominant disease, tricho-dento-osse-
ous syndrome (TDO; OMIM 190320) [1,2]. The most common mutation form is a 4-bp dele-
tion (c.571_574delGGGG) in coding sequence of DLX3. TDO-affected individuals with this
mutation have defects in tooth, hair, and bone, and the most penetrant phenotype features are
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dental findings of enamel hypoplasia and hypomaturation with taurodontism (elongation of
the dental pulp chamber), suggesting a specific role of DLX3 in amelogenesis [3]. The process
of amelogenesis is divided into three main phases: the pre-secretory, secretory, and maturation
stages. During this process, the sequential expression and secretion of enamel matrix proteins
(EMPs) are critical and considered to be co-regulated by transcriptional factors, cytokines,
growth factors, and signaling molecules [4,5]. Since the hypoplastic and hypomaturation
enamel defects of TDO are comparable to those caused by mutations of EMP genes such as
AMELX, AMBN, ENAM,MMP20, and KLK4 [6–8], a possible link between DLX3 and EMP
genes is indicated.

DLX3 is expressed in the placenta during early embryonic development, and is later found
in skin and bone, as well as tissues derived from epithelial-mesenchymal interactions, including
dental epithelium and mesenchyme [9,10]. As is regarded to be a transcriptional activator,
DLX3 is composed of a DNA-binding homeodomain and two transactivation domains sepa-
rately located in the N-terminal region or just downstream of the homeodomain [11]. Ex vivo
examination of osteoblastic and keratinocyte cell lines have shown that the mutant DLX3 re-
sponsible for TDO (DLX3TDO) exerts a dominant-negative effect on the normal function of
wild-type DLX3, which might lead to the abnormal phenotypes [12].

Studies have strongly suggested the pivotal role of DLX3 in controlling matrix deposition
and biomineralization. In osteoprogenitor cells, DLX3 promotes the expression of bone matrix
proteins such as type 1 collagen, bone sialoprotein, osteocalcin, and alkaline phosphatase [13].
In particular, chromatin immunoprecipitation (ChIP) assays have confirmed that osteocalcin
is directly regulated by DLX3 [14]. During dentin development, mutant DLX3 (containing a
4-bp deletion) in transgenic mice has been reported to disrupt odontoblast cytodifferentiation
and lead to odontoblast apoptosis [15]. Furthermore, ex vivo studies in odontoblasts have es-
tablished a mechanistic link between DLX3 and a major dentin matrix protein, DSPP [16]. In
addition, DLX3 has been shown to participate in the odontoblastic and osteogenic differentia-
tion process of dental-derived cells [17,18].

In dental enamel, also an important mineralized tissue, DLX3 expression has been found in
the pre-secretory ameloblasts of mouse molars [19]. However, the spatio-temporal expression
pattern of DLX3 and its exact role in amelogenesis remain largely unknown. In the current
study, we characterized the expression pattern of DLX3 in amelogenesis, and analyzed the ef-
fects of DLX3 on EMP genes in vitro. We found that in amelogenesis, DLX3 plays crucial roles
through up-regulating the EMP genes Amelx, Enam, Klk4, and Odam, and that mutant-DLX3
disrupts this regulatory function.

Materials and Methods

Animals and ethics statement
This study was carried out in strict accordance with the National Institutes of Health Guide for
the Care and Use of Laboratory Animals (National Resource Council). All protocols were ap-
proved by the Animal Care and Use Committee of Peking University (Permit number: LA
2010–066). Neonatal ICR mice (postnatal days 1, 3, 7, and 14) in the postprandial state were
anesthetized with 5 mg/100 g body weight of sodium pentobarbital, and all reasonable efforts
were made to ameliorate suffering. For immunochemistry and real-time RT-PCR assay, tooth
germs of the first mandibular molars were dissected under a microscope (Zeiss Stemi 2000-C,
Germany).
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Cell culture
The mouse ameloblast-like cell lineage, LS8, was a gift from Dr. Malcolm Snead (USC, Los An-
geles, CA, USA) [20]. The LS8 cells were maintained in Dulbecco’s modified Eagle’s medium
(DMEM; Gibco BRL, Gaithersburg, MD, USA) containing 10% (v/v) fetal bovine serum, peni-
cillin (100 U/ml), and streptomycin (100 μg/ml) in a 37°C, 5% CO2 incubator, and passaged
just before reaching confluence.

Plasmid construction
The pCI-neo-V5DLX3WT plasmid, expressing mouse DLX3 under a constitutive CMV pro-
moter, was kindly provided by Dr. Maria Morasso (Developmental Skin Biology Section,
NIAMS-NIH, DC, USA). The pCI-neo-V5DLX3TDO plasmid (with the TDO mutation,
c.571_574delGGGG) was constructed by GeneChem Technology (Shanghai, China). Con-
structs of pGLEnam-E1, pGLEnam-E2, pGLAmelx-E2, pGLKlk4-E1, and pGLOdam-E2 were
made by cloning the amplified PCR products of the corresponding enhancer regions (with po-
tential DLX3 binding sites) into the pGL3-Promoter Luciferase Reporter Vector (Promega,
Madison, WI, USA). Mutations of the potential DLX3 binding sites (TAATT changed to
TGGTT) on pGLEnam-E1, pGLAmelx-E2, and pGLOdam-E2 were performed by TransGen
Tech (Beijing, China), generating the constructs Mut pGLEnam-E1, Mut pGLAmelx-E2, and
Mut pGLOdam-E2. The mutations were verified by DNA sequencing.

DLX3 immunohistochemistry
Dissected mouse tooth germs were fixed in 4% paraformaldehyde overnight at 4°C, then decal-
cified in 10% ethylenediaminetetraacetic acid, dehydrated in a graded series of ethanol, and
embedded in paraffin. Serial sections were cut at 5 μm, and then immunohistochemistry was
performed with the SP Histostain-Plus kit (ZSGB-BIO, China) based on the instructions, as de-
scribed previously [21]. Briefly, the sections were deparaffinized, rehydrated, treated with cit-
rate buffer (10 mM, pH 6.0), and microwaved. Then, 3% H2O2 was added to inactivate
endogenous peroxidase, and 10% goat serum was used for blocking. After that, the sections
were incubated with anti-DLX3 antibody (code: ab64953, Abcam, Cambridge, MA, USA) over-
night at 4°C, or with non-relevant rabbit immunoglobulins as negative control. Goat anti-rab-
bit secondary antibody (ZSGB-BIO) and diaminobenzidine (Sigma, St. Louis, MO, USA) were
then applied, and the slices were visualized under a light microscope (DMRB, Leica, Germany).
Using the Image-Pro Plus software (version 6) (Media Cybernetics, USA), the mean optical
density of the ameloblasts region [integrated optical density (IOD)/unit area] was determined,
which represents the immunoreactivity of DLX3 protein within ameloblast cells.

Plasmid transfection
LS8 cells were seeded at a density of 2×104 cells per cm2 and cultured overnight. For transfec-
tion, the VigoFect reagent (Vigorous Biotech, Beijing, China) and plasmid DNA were separate-
ly diluted in opti-DMEM (Gibco BRL) for 5 min, mixed at room temperature for 15 min, and
then added to the cultures following the manufacturer’s instructions. After 6 h of transfection,
the medium was replaced. Cells were harvested and analyzed at 36 or 48 h post-transfection.

RNA interference
Three different nucleotides (20–23 nt, named Dlx3 siRNA #1, #2, #3) targeting mouse Dlx3
mRNA (NM_005220) were produced by Sigma and tested for silencing. A nonspecific siRNA
(NS siRNA; Sigma) was used as control. LS8 cells were seeded and cultured until sub-
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confluence. Dlx3 siRNA or NS siRNA was diluted in DMEM to a final concentration of 50
nM, combined with the Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, USA), incu-
bated at room temperature for 20 min, and then added to the cultures. The medium was re-
placed 8 h later, and total RNA and protein were extracted at 36 or 48 h post-transfection for
further analysis. The sequences of the siRNAs were as follows: Dlx3 siRNA (#1), GUCACU
GACCUGGGCUAUUdTdT, AAUAGCCCAGGUCAGUGACdTdT; Dlx3 siRNA (#2),
CGAACGAUCUACUCCAGCUdTdT, AGCUGGAGUAGAUCGUUCGdTdT; Dlx3 siRNA
(#3), GUGACUCCAUGG CCUGCAAdTdT, UUGCAGGCCAUGGAGUCACdTdT; NS
siRNA, UUCUCCGAACGUGUCACGUTT, ACGUGACACGUUCGGAGAATT.

Western blot
LS8 cells were washed twice with PBS, and then lysed in modified radioimmunoprecipitation
assay lysis buffer (Beyotime, Beijing, China) containing 1 mM phenylmethylsulfonyl fluoride.
Protein concentration was quantified with the bicinchoninic acid protein assay (Pierce, Rock-
ford, IL, USA). Aliquots of 50 μg protein extract per sample were subjected to 10% sodium
dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose mem-
branes. The membranes were blocked with 5% skimmed milk for 1 h and then incubated over-
night with specific primary antibodies at 4°C. The following antibodies were used: anti-DLX3
(code: sc-18143, Santa Cruz, CA, USA), anti-amelogenin (kindly provided by Dr. DenBesten,
University of California, USA), anti-enamelin (prepared as previously described) [22], and
anti-GAPDH (code: TA-08, ZSGB-BIO). The membranes were then incubated with secondary
sheep anti-mouse or sheep anti-rabbit horseradish peroxidase-conjugated linked antibodies
(Santa Cruz) for 1 h. The protein signals were visualized with Chemiluminescent Substrate
(Millipore, MA, USA) and exposed by the ChemiDoc XRS System (BioRad, CA, USA).
GAPDH (glyceraldehyde-3-phosphate dehydrogenase) served as an internal control. The den-
sitometric analysis was performed on grayscale images from 3 independent experiments with
Multi-gauge software (Fuji, Japan).

Real-time RT-PCR
Total RNA was isolated from LS8 cell cultures or mouse tooth germs using Trizol reagent (Vig-
orous Biotech), according to the manufacturer’s instructions. cDNA synthesis was carried out
in a 25 μl reaction mixture containing 2 μg total RNA, 400 mM reverse transcription primers, 4
U/μl M-MLV, 1 U/μl RNAsin, and 0.4 mM dNTP mix, using M-MLV reverse transcriptase
(Promega). The amplification reaction was carried out in an ABI 7300 Real-Time PCR System
(Applied Biosystems, CA, USA) with SYBR Green Master Mix (Toyobo, Osaka, Japan) and the
appropriate primers (Table 1). The annealing temperature was 60°C. Transcription levels were
normalized against GAPDH, and each value is the average of three independent experiments.

Chromatin immunoprecipitation assay
LS8 cells were transfected with pCI-neo-V5DLX3WT for 48 h. Cells were cross-linked with 1%
(v/v) formaldehyde at 37°C for 10 min. DNA was sheared by sonication and immunoprecipi-
tated with nonspecific IgG or anti-DLX3 antibody (code: ab66390, Abcam) for 12 h at 4°C. Im-
mune complexes were incubated with Protein A/G-Sepharose CL-4B (Amersham Biosciences,
Uppsala, Sweden) for 2 h at 4°C. Protein-DNA cross-linking was reversed by overnight incuba-
tion at 65°C. The precipitated DNA was amplified by real-time PCR for fragments of the spe-
cific enhancer region. PCR products were separated onto a 2% agarose gel, visualized, and
analyzed with a GelDoc-It TS Imaging System (UVP, Upland, CA, USA). The PCR primers
used for chromatin immunoprecipitation (ChIP) assay are listed in Table 2.
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Table 1. RT-PCR primers.

Gene Primer sequence Species GenBank accession number PCR product size (bp)

Enam S 5’-TGGCAATGGACTTTACCCCTATC-3’ Mouse NM_017468.3 273

AS 5’-GCATCAGGCACAGTTGAGTTTGTAG-3’

Amelx S 5’-TGAGGTGCTTACCCCTTTGAAGTG-3’ Mouse NM_009666.3 216

AS 5’-GGAACTGGCATCATTGGTTGC-3’

Ambn S 5’-TTGAGCCTTGAGACAATGAGAC-3’ Mouse NM_009664.1 114

AS 5-’AAGTCCGTGCAACCATAAACTAT-3’

Tuft1 S 5’-CGGAACTGGTGTACCTTGGTG-3’ Mouse NM_011656.2 152

AS 5’-GGCATCATGGCATAGGTCTTC-3’

Mmp20 S 5’-TACGAAGTGGCTGAACGAG-3’ Mouse NM_013903.2 114

AS 5’-TGGGAACCCGAAGTCATA-3’

Klk4 S 5’-TTGCAAACGATCTCATGCTC-3’ Mouse NM_019928.1 228

AS 5’-TGAGGTGGTACACAGGGTCA-3’

Odam S 5’-GTCACATCCTCACCACAGCA-3’ Mouse NM_027128.2 160

AS 5’-GAGTTTCTGGAGCTGTGCCT-3’

Amtn S 5’-GGACCACTGAATGGACAGCA-3’ Mouse NM_027793.1 191

AS 5’-TCTGGTTTAGTGCCTGCCTG-3’

DLX3 S 5’-AGCCCAGTATCTGGCCTTG-3’ Mouse NM_010055.3 133

AS 5’-CGGCACCTCCCCATTCTTA-3’

Gapdh S 5’- CCAGCCTCGTCCCGTAGACA-3’ Mouse NM_008084.2 189

AS 5’- CCGTTGAATTTGCCGTGAGT-3’

As, antisense; S, sense.

doi:10.1371/journal.pone.0121288.t001

Table 2. Primers for ChIP assay.

Fragments Predicted binding site Primer sequences (5’-3’) Product size (bp)

Enam-E1 -4842/-4824 bp S 5’-AAGAATGTATCAGTGGTTGG-3’ 183

AS 5’-GTTAAGCCTCAGTTTCCTCA-3’

Enam-E2 -4650/-4632 bp S 5’-TGAGGAAACTGAGGCTTAAC-3’ 123

AS 5’-TATTTATGGTGTCTTCGGAT-3’

Amelx-E1 -5278/-5260 bp S 5’-TCCATGGGGACATTGCATTT-3’ 166

AS 5’-ACACCTCAAATCTCAACCTTTCT-3’

Amelx-E2 -1146/-1128 bp S 5’-TCTTTGTGCCATCTACACCA-3’ 160

AS 5’-CAAATCTGGCTCCCAAAAGGC-3’

Klk4-E1 -3711/-3693 bp S 5’-AGCTACATCCCTCCAGCTTCA-3’ 197

AS 5’-ACAGTCTTCCCGACATGCTTC-3’

Odam-E1 -4492/-4474 bp S 5’-TCTGTGAGCCTCTTGGTGGAT-3’ 180

AS 5’-CGTTCATTCACCAGCACAAAAC-3’

Odam-E2 -1769/-1747 bp S 5’-AGGGATTCCATTTGCTGCAC-3’ 193

AS 5’-AGGATCACAAGTATTCTGATGAAA-3’

As, antisense; S, sense.

doi:10.1371/journal.pone.0121288.t002
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Luciferase assays
LS8 cells were seeded into 24-well plates at 1×105 per well, and cultivated until 60% confluence.
Constructs of pGL3-promoter, pGLEnam-E1, pGLEnam-E2, pGLAmelx-E2, pGLKlk4-E1,
pGLOdam-E2, or Mut pGLEnam-E1, Mut pGLAmelx-E2, and Mut pGLOdam-E2 were sepa-
rately co-transfected into LS8 cells with pCI-neo-V5DLX3WT, pCI-neo-V5DLX3TDO, or pCI-
neo, using VigoFect reagent according to the manufacturer’s instructions. The total amount of
DNA per well was kept constant using pcDNA3.1 plasmid. Luciferase activity was measured by
a dual luciferase assay system (Vigorous) and normalized to Renilla luciferase activity. All ex-
periments were performed in triplicate, and each was repeated three times.

Statistical analysis
The data are presented as mean ± standard deviation (SD). Comparisons between two groups
were performed on GraphPrism5 statistical software (GraphPad Software, USA), using Stu-
dent’s t-test or one-way analysis of variance. A significant difference was noted when P<0.05.

Results

Spatial and temporal expression of Dlx3 during mouse amelogenesis
Immunostaining for DLX3 protein in mouse tooth germs of the mandibular first molar showed
positive staining localized in the nuclei (Fig. 1A-L). The immunoreactivity of DLX3 staining
was then quantified using Image-pro plus software (Fig. 1M). On postnatal day 1 (PN1), the
enamel matrix had not been secreted in most area (except for the cusp region), indicating the
pre-secretory stage of amelogenesis (Fig. 1A-C). DLX3 was weakly expressed in pre-secretory
ameloblasts. At PN3, the enamel matrix was partially deposited and the cells indicated were en-
tering the early secretory stage (Fig. 1D-F). Staining of DLX3 in early secretory ameloblasts was
stronger than in pre-secretory ameloblasts. On PN7 sections, which represented the late secre-
tory stage, DLX3 staining was even stronger in late than in early secretory ameloblasts
(Fig. 1G-I). However, the staining of DLX3 significantly decreased and was hardly detectable in
maturation-stage ameloblasts of PN14 mice (Fig. 1J-L). DLX3 staining was also observed in
odontoblasts and dental pulp cells, but seldom in the stellate reticulum layer. Consistent with
the expression pattern of DLX3 protein, the expression of Dlx3mRNA was elevated at the early
secretory stage (PN3), further increased at late secretory stage (PN7), and then decreased at the
maturation stage (PN14) (Fig. 2). The expression of all analyzed EMP genes Enam, Amelx,
Ambn, Tuft1,Mmp20, Klk4, Odam, and Amtn was elevated at PN3, corresponding to the eleva-
tion of Dlx3 expression (Fig. 2).

Up- and down-regulation of enamel matrix protein genes Enam, Amelx,
Klk4, andOdam by DLX3-overexpression and knockdown
After 24 or 36 h of DLX3WT plasmid transfection, the over-expression efficiency of DLX3
mRNA and protein in LS8 cells was confirmed (Fig. 3A). With Dlx3-overexpression, 4 EMP
genes, Enam, Amelx, Klk4, and Odam, were up-regulated by DLX3 at the mRNA level
(Fig. 3B), compared with control. Western blot showed the corresponding up-regulation of
ENAM, AMELX, and KLK4 proteins (Fig. 3C). Since there is no commercially-available anti-
body against mouse ODAM protein, it was not analyzed in this study.

Expression of DLX3 in LS8 cells was successfully knocked down by siRNA fragments specif-
ic for DLX3, particularly by Dlx3 siRNA #1 and #3 (Fig. 3D). The most effective #3 Dlx3 siRNA
were then used for the subsequent knockdown experiments. After DLX3 silencing, Enam,
Amelx, Klk4, and Odam were down-regulated compared with the NS group, consistent with
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the up-regulation effects of DLX3 over-expression (Fig. 3E). Western blot analysis revealed
that the protein levels of ENAM, AMELX, and KLK4 were also decreased after DLX3 knock-
down (Fig. 3F). The down-regulated expression of Dlx3 and its targets genes, Enam, Amelx,
Klk4 and Odam, mediated by Dlx3 siRNA, was then successfully rescued by transfection of
plasmid pCI-neo-V5DLX3WT, as analyzed by qPCR and western blot, excluding the possibility
of siRNA off-target effects (Fig. 3E and F).

DLX3 directly transactivates the expression of Enam, Amelx, andOdam
through binding to the enhancer regions
For Enam, Amelx, Klk4, and Odam, bioinformatic analysis was performed separately on 6000
bp 5’-flanking regions upstream of the translation start sites (defined as +1 bp) using MatIn-
spector software. Conserved DLX3 potential binding sites were predicted on the enhancer re-
gions of these 4 EMP genes, and the locations are named as follows: Enam-E1 (representing the
first potential DLX3 binding site on the Enam enhancer), -4842/-4824 bp; Enam-E2, -4650/-
4632 bp; Amelx-E1, -5278/-5260 bp; Amelx-E2, -1146/-1128 bp; Klk4-E1, -3711/-3693 bp;
Odam-E1, -4492/-4474 bp; and Odam-E2, -1769/-1747 bp (Fig. 4A). Further ChIP assays

Fig 1. Immunostaining of DLX3 protein at different stages of mouse amelogenesis. (A-L) Immunostaining of DLX3 in sections of mouse molar germs at
postnatal days 1 (A-C), 3 (D-F), 7 (G-I), and 14 (J-L). Representative figures from three independent experiments are shown. (M) The immunoreactivity of
DLX3 protein within ameloblast cells was expressed as the mean optical density of the ameloblasts [integrated optical density (IOD)/unit area]. Each bar
represents mean ± SD. *P<0.05 vs. the control (PN1 group). A, D, G, and J, original magnification ×100; B, E, H, and K, high-power magnification of the
boxed areas in the low-magnification images, original magnification ×200; C, F, I, and L, high-power magnification of ameloblasts from the area inside the
boxes in B, E, H, and K, original magnification ×1000. PA, pre-secretory ameloblasts; SA, secretory ameloblasts; MA, maturation ameloblasts; Od,
odontoblast; P, dental pulp; SR, stellate reticulum layer. PN, postnatal day.

doi:10.1371/journal.pone.0121288.g001
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confirmed the recruitment of DLX3 onto the predicted binding sites of Enam-E1, Enam-E2,
Amelx-E2, Klk4-E1, and Odam-E2 (Fig. 4B). The primers for the distal region outside the 6000
bp 5’-flanking region of Enam, Amelx, Klk4, and Odam were designed and used as negative
controls (S1 Table and S1 Fig.).

To characterize the functional significance of this DLX3 recruitment, luciferase assays were
performed with pGL3-promoter luciferase reporters covering the binding site and the sur-
rounding sequence of ~200 bp. The results showed the transcriptional activation of pGLEnam-
E1, pGLAmelx-E2, and pGLOdam-E2 by DLX3 recruitment, but not pGLEnam-E2 and
pGLKlk4-E1, compared with control (Fig. 4C). This DLX3-dependent activation of Enam,
Amelx, or Odam was also dose-dependent (S2 Fig.). These activation effects were disrupted by
mutations of the DLX3 binding sites on pGLEnam-E1, pGLAmelx-E2, and pGLOdam-E2
(Fig. 4D).

TDOmutation of DLX3 inhibits the activation effects of wild-type DLX3
on EMP genes
In osteoblast and keratinocyte cell lines, the mutated DLX3TDO is known to have a dominant-
negative effect on the transcriptional function of DLX3WT [17,18]. To determine the influence
of DLX3TDO on the activating action of DLX3WT in ameloblast-like cells, the V5DLX3TDO plas-
mid was transfected alone or co-transfected with the V5DLX3WT plasmid at a ratio of 1:1 into

Fig 2. Expression patterns ofDlx3 and EMP genes at the mRNA level during amelogenesis. Real-time RT-PCR was used to analyze the expression
levels of Dlx3 and EMP genes using RNA extracted from tooth germs at the indicated stages. The expression level at PN1 was set at 1, and the fold-changes
at other stages were calculated relative to PN1. The data represent three independent experiments, and are shown as mean ± SD. *P<0.05 vs. the control
(PN1 group). Enam, Enamelin; Amelx, Amelogenin; Ambn, ameloblastin; Tuft, Tuftelin-1;Mmp20, Matrix metalloproteinase 20; Klk4, kallikrein 4;Odam,
Odontogenic ameloblast-associated protein; Amtn, Amelotin.

doi:10.1371/journal.pone.0121288.g002
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LS8 cells. The over-expression efficiency of V5DLX3WT or/and V5DLX3TDO was confirmed by
western blot using an antibody against V5-tag (Fig. 5A).

In the presence of both DLX3WT and DLX3TDO, the mRNA levels of Enam, Amelx,
Klk4, and Odam were significantly reduced compared with DLX3WT alone (Fig. 5B). Corre-
spondingly, the protein levels of ENAM, AMELX, and KLK4 were down-regulated in the
DLX3WT+DLX3TDO group compared with the DLX3WT group (Fig. 5C). Further luciferase as-
says revealed that the transcriptional activity of Enam-E1, Amelx-E2, and Odam-E2 in the

Fig 3. Regulation of Enam, Amelx, Klk4, andOdam by DLX3-overexpression and knockdown. (A) Over-expression of DLX3 was determined by real-
time RT-PCR and western blot. Values are mean ± SD of the data from three independent experiments. *P<0.05 vs. control (con) group. (B) After 36 h of
transfection, the expression of EMP genes was assessed. The mRNA expression of Enam, Amelx, Klk4, andOdamwere significantly up-regulated. Values
are presented as mean ± SD. *P<0.05 vs. the control (con) group. (C) After 48 h of transfection, elevated protein expression of ENAM, AMELX, and KLK4
were detected by western blot. Upper panel: western blot bands of ENAM, AMELX, and KLK4 (representative of three independent experiments). Lower
panel: densitometric analysis of images of 3 independent experiments. *P<0.05 vs. the control (con) group. (D) Expression levels of DLX3 were determined
after transfection with 3 independent Dlx3-specific small interfering RNAs (Dlx3 siRNA #1, #2, #3), or a nonspecific siRNA, NS siRNA. Values are from three
independent experiments, and shown as mean ± SD. *P<0.05 vs. NS group. (E) After DLX3 silencing (using Dlx3 siRNA #3), the expression of EMP genes
was assessed. The expression of Enam, Amelx, Klk4, andOdam was significantly down-regulated, and then successfully rescued by transfection of plasmid
pCI-neo-V5DLX3WT. Values are mean ± SD of data from three independent experiments. *P<0.05. (F) At the protein level, expression of ENAM, AMELX,
and KLK4 were also down-regulated by DLX3-knockdown and then rescued by pCI-neo-V5DLX3WT transfection, as analyzed by western blot. Upper panel:
western blot bands of ENAM, AMELX, and KLK4 (representative of three independent experiments). Lower panel: densitometric analysis of images of 3
independent experiments. *P<0.05.

doi:10.1371/journal.pone.0121288.g003
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presence of both DLX3WT and DLX3TDO were decreased compared with the DLX3WT group
(Fig. 5D). These results indicated that in LS8 cells, DLX3TDO inhibits the transcriptional activa-
tion of EMP genes by DLX3WT.

Discussion
In the current study, we investigated the specific role of the transcriptional factor DLX3, and
the expression patterns of Dlx3mRNA and protein during amelogenesis. Three EMP genes
(Enam, Amelx, and Odam) were confirmed to be new direct targets of DLX3. The DLX3 mu-
tant responsible for TDO interfered with the normal activation function of wild-type DLX3 in
an ameloblast cell line, which partially explains the dental enamel defects in individuals with
TDO.

Previous studies showed that DLX3 is expressed in mouse ameloblasts [9], yet the spatio-
temporal expression of DLX3 in amelogenesis has not been reported. Our immunochemistry
results revealed that DLX3 staining was strong in the nuclei of ameloblasts during secretory
stages (PN3 and PN7), yet were relatively weak in the pre-secretory and maturation stages,
consistent with the mRNA pattern. This expression pattern is in accord with the expression of

Fig 4. DLX3 directly transactivates the expression of Enam, Amelx, andOdam by binding to the enhancer regions. (A) Bioinformatic analysis was
performed on 6000 bp 5’-flanking regions of Enam, Amelx, Klk4, andOdam. 1 or 2 conserved DLX3 response elements were separately found on the four
genes (translation start site defined as +1 bp). RE, response element. (B) ChIP assays determined whether DLX3 was recruited to the predicted enhancer
sites. Left panel: gel images of PCR products, representative of three independent experiments. Right panel: statistics of the PCR results. Values are from
three independent experiments, and shown as mean ± SD. *P<0.05 vs. IgG group. (C) Luciferase assays were performed to evaluate the impact of DLX3 on
the transcriptional activity of each constructed luciferase reporter, which contained enhancer sequences of specific potential DLX3 response elements. Data
are compared with the control group (con), and presented as mean% ± SD. *P<0.05. pEnam-E1 represents pGLEnam-E1, etc. (D) Mutations of DLX3
binding sites reduced the activation effect of DLX3 on the transcriptional activity of the pGLEnam-E1, pGLAmelx-E2, and pGLOdam-E2 reporters. The data
represent the mean% ± SD of three independent experiments, each experiment performed in triplicate. *P<0.05 vs. the control (con) group.mut pEnam-E1
represents Mut pGLEnam-E1, etc.

doi:10.1371/journal.pone.0121288.g004
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EMP genes, suggesting us an association between DLX3 and EMP genes. Subsequent gain-of-
function and loss-of-function studies identified that DLX3 promotes the expression of Enam,
Amelx, Klk4, and Odam in ameloblast cell line, while mutant DLX3 inhibits this promoting
function. Among these 4 EMP genes, Amelx and Enam are both associated with matrix apposi-
tion and mineralization, while Odam and Klk4 are generally thought to participate in matrix
mineralization [23]. Combined with the hypoplasia and hypomaturation types of amelogenesis
imperfecta detected in TDO patients [3], we suggested that mutant DLX3 disrupts both the ap-
position and mineralization processes of amelogenesis through inhibiting the activation func-
tion of wild-type DLX3 on Enam, Amelx, Klk4, and Odam. DLX3 staining was also observed in
odontoblasts, consistent with the regulation of Dspp (dentin sialophosphoprotein), one of the
main dentin matrix protein genes, by DLX3 [16].

AMELX is the most abundant EMP expressed by secretory and early maturation amelo-
blasts, comprising>90% of the unmineralized enamel matrix, and is thought to form an or-
ganic scaffold that is essential for regulation of crystallite growth [24]. In humans, variety of
mutations in AMELX gene are associated with enamel hypoplasia and/or hypomaturation
(OMIM 301200) [25]. Recently, in vitro studies have demonstrated that another DLX member,

Fig 5. TDOmutation of DLX3 inhibits the activation of EMP genes by wild-type DLX3. (A) The plasmids pCI-neo (control empty vector, con),
V5DLX3WT, and V5DLX3TDO were transfected into LS8 cells. Equal amounts of V5DLX3WT or V5DLX3TDO plasmid were added to each group, and the total
amounts of plasmid in the groups were kept constant using pCI-neo. Over-expression of V5DLX3WT or/and V5DLX3TDO were analyzed by western blot using
antibody against V5-tag. A representative figure from three independent experiments is shown. (B) After over-expression, the mRNA expression levels of
Enam, Amelx, Klk4, andOdamwere evaluated. Values were obtained from three independent experiments, and are presented as mean ± SD. *P<0.05
between the DLX3WT group and the DLX3WT+DLX3TDO group. (C) Left panel: western blot for the protein expression levels of ENAM, AMELX, and KLK4
after transfection (representative of three independent experiments). Right panel: densitometric analysis of images of 3 independent experiments. *P<0.05
between the DLX3WT group and the DLX3WT+DLX3TDO group. (D) After co-transfection with pCI-neo (empty control vector), V5DLX3WT, V5DLX3TDO, or both
V5DLX3WT and V5DLX3TDO plasmids, the relative transcriptional activity of the 5 reporter constructs containing potential DLX3 response elements were
analyzed by luciferase assays. Data were compared with the control group (con), and are presented as mean% ± SD. *P<0.05 between the DLX3WT group
and the DLX3WT+DLX3TDO group. pEnam-E1 represents pGLEnam-E1, etc.

doi:10.1371/journal.pone.0121288.g005
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DLX2, transactivates Amelx expression, yet the expression of DLX2 is very weak at the secreto-
ry stage and is elevated at the maturation stage [26]. Since our results showed the expression of
DLX3 is high at the secretory stage and decreased at the maturation stage, it seems that the acti-
vation of Amelx expression at the secretory stage is mainly controlled by DLX3, and switches
to DLX2 at the maturation stage.

ENAM, the largest EMP, is also expressed at the secretory and early-maturation stages, and
is considered to participate in crystallite growth and elongation [27]. Clinically, multiple
ENAMmutations cause smooth hypoplastic and local hypoplastic AI (OMIM 104500) with a
grossly reduced enamel volume [28]. Transgenic studies found that the -5200~-3900 bp region
of the Enam enhancer is related to its tissue-specific regulation [29], consistent with our finding
that DLX3 transactivated Enam expression through binding to its -4842/-4824 bp enhancer
(just between the -5200~-3900 bp region). This indicates DLX3 participates in the tissue-spe-
cific expression of Enam in ameloblasts.

ODAM is a structural protein considered to be crucial in enamel mineralization [30], no
mutation of ODAM gene has been associated with AI till now. Our results showed that the ex-
pression of Odam remained at a high level in the late-maturation stage, yet Dlx3 expression
was very weak at this time. At different stages of osteoblast differentiation, the regulation of
RUNX2 and osteocalcin are co-regulated by the interaction and interplay between DLX3,
DLX5, and MSX2 [14,31]. Thus, the regulation of Odam in amelogenesis at the late-maturation
stage could be controlled by other transcription factors together with DLX3, for example, other
DLX members, or MSX family members (another homeodomain family) [32].

KLK4 is one of the extracellular proteases that cleave structural proteins and function in
enamel maturation and mineralization [33]. Mutations in KLK4 gene are associated with pig-
mented hypomaturation AI (OMIM 204700) and the enamel is not fully mineralized [34].
Though the expression level of Klk4 was affected by DLX3 over-expression or knockdown, the
enhancer of Klk4 was not activated by DLX3, suggesting Klk4maybe an indirect target of
DLX3. The factor(s) mediating between DLX3 and Klk4 remains to be clarified in
further studies.

In addition to EMPs, interactions between epithelial ameloblasts and mesenchymal odonto-
blasts also affect the amelogenesis process. Disorders of odontoblast function inhibit the devel-
opment of dental enamel, and vice versa [35,36]. In transgenic mice expressing DLX3TDO

under a Col1A1 promoter, DLX3TDO that expressed in odontoblasts only (not ameloblasts)
does not influence the enamel phenotype [15]. This suggests that the enamel disorders in TDO
are caused by the specific influence of DLX3TDO on amelogenesis, in line with our results that
DLX3TDO inhibited the activation of EMP genes by DLX3WT. Due to placental defects,
DLX3-knockout mice die early, on embryonic day 9.5 [37]. To in vivo confirm the function of
DLX3 in amelogenesis, conditional DLX3-knockout or DLX3-mutant models are being con-
structed for further studies.

In conclusion, we found that DLX3 up-regulates the EMP genes Amelx, Enam, Odam, and
Klk4 by directly binding to their enhancer regions or indirect mechanisms, while mutant-
DLX3 (responsible for TDO) disrupts this regulatory function. Our results elucidate the specif-
ic function of DLX3 in amelogenesis and provide insights into the molecular mechanisms un-
derlying the enamel defects in TDO disease.
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