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The relationship between mechanical force and alveolar bone remodeling is an important
issue in orthodontics because tooth movement is dependent on the response of bone tis-
sue to the mechanical force induced by the appliances used. Mechanical cyclical stretch
(MCS), fluid shear stress (FSS), compression, and microgravity play different roles in the
cell differentiation and proliferation involved in bone remodeling. However, the underlying
mechanisms are unclear, particularly the molecular pathways regulated by non-coding RNAs
(ncRNAs) that play essential roles in bone remodeling. Amongst the various ncRNAs, miR-
NAs act as post-transcriptional regulators that inhibit the expression of their target genes.
miRNAs are considered key regulators of many biologic processes including bone remod-
eling. Here, we review the role of miRNAs in mechanical force-induced bone metabolism.

Introduction
Bone remodeling, which involves a cross-talk between osteoclasts and osteoblasts, is regulated by a num-
ber of proteins that interact through complex mechanisms [1]. Mechanical force can induce resident cell
populations to adapt, maintain, and repair the bone structure. The in vivo milieu to which osteoblasts and
osteoclasts are exposed is dynamic and changeable, and is where strain, stress, shear, pressure, fluid flow,
streaming potential, and acceleration forces regulate bone remodeling [2]. Thus, studying the effects of
mechanical forces on bone cells in vitro will improve our understanding of bone remodeling.

Mechanical forces play essential roles in bone remodeling. Mechanical cyclical stretching (MCS), fluid
shear stress (FSS), compression, and microgravity play different roles in cell differentiation and pro-
liferation by affecting intracellular interactions. Although the mechanisms are unclear, regulation by
non-coding RNAs (ncRNAs) play an indispensable role in bone metabolism. ncRNAs, which are not
translated into proteins [3], include miRNAs, siRNAs, piwi-interacting RNAs, small non-translated nu-
cleolar RNAs (snoRNAs), small nRNAs, and long ncRNAs (lncRNAs). miRNAs, which are short ssRNAs
of 18–25 nts, modulate orthodontic tooth movement (OTM) and alveolar bone remodeling in normal
and inflammatory microenvironments in vivo [4,5]. LncRNAs are associated with the osteodifferentia-
tion of human adipose-derived stem cells (ASCs) [6]. As part of the complex miRNA–mRNA–lncRNA
regulatory network, lncRNAs influence bone formation and resorption in patients with osteoporosis [7].
Moreover, constitutive expression or silencing of lncRNA H19 is related to BMP9-induced osteogenic dif-
ferentiation [8]. snoRNAs are also involved in bone formation. The snoRNA Snord116 is closely related
to the bone-mass phenotype in people with Prader–Willi syndrome [9]. Circular RNAs (circRNAs) may
play important roles in bone formation [10], and the circRNA–miRNA–mRNA network may function in
osteogenesis [11].

Few studies have investigated mechanical force-induced changes in the expression of ncRNAs related to
bone metabolism. Indeed, the effects of mechanical forces on lncRNA and snoRNA expression have been
investigated less extensively than their effects on miRNAs. Hence, we reviewed the effects of mechanical
force on miRNAs during bone remodeling.
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Effects of mechanical forces on bone metabolism
MCS
MCS is involved in bone formation. Long-term mechanical stretching of human adipose tissue multipotential stro-
mal cells (hAT-MSCs) leads to early osteogenesis [12], which has been confirmed in vivo [2,13-16]. Production of
PDL-specific markers, including periostin and tenascin, can be stimulated by mechanical stress and can enhance
cell proliferation [17]. The NGF-TrkA signaling pathway promotes communication between osteoblasts and sensory
nerves in mice undergoing MCS [2]. The NOTCH and PERK-eIF2 α-ATF4 signaling pathways are also involved
in osteodifferentiation [18,19]. These processes alter the expression levels of diverse osteogenesis-associated genes
including osteopontin (OPN), osteocalcin, runt-related transcription factor 2 (RUNX2), and type I collagen [20,21].

FSS
FSS promotes osteoblast proliferation [22] and induces Ca2+ influx via transient receptor potential cation channel
subfamily V member 4 (TRPV4) channels and osteogenic differentiation of MSCs. These effects are inhibited by a
selective TRPV4 blocker and TRPV4 siRNA [23]. FSS-induced up-regulation of cyclin B1 and CDK1 through the
Gq-dependent ERK5 signaling pathway promotes the proliferation of MC3T3-E1 cells [22]. AMP-activated protein
kinase signaling in BMSCs is involved in adiponectin-mediated prevention of FSS-induced cell death [24]. Moreover,
the effects of FFS differ according to cell surface chemistry; osteoblasts have higher sensitivity to, and lower tolerance
for, –OH and –CH3 surfaces compared with –NH2 surfaces [25]. FSS enhances and weakens calcium oscillations in
osteoblasts in the early (4 days) and late (8 days) stages of induction, respectively [26]. The effects of FSS on osteoclasts
are mediated by signaling pathways involving mechanosensitive and cation-selective channels, phospholipase C, and
the endoplasmic reticulum [27].

Compressive force
Compressive force plays an important role in osteoclastogenesis. Both compressive force and hypoxia may initiate
osteoclastogenesis during OTM [28]. Heavy compression causes bone fracture of finger-like patterns [29]. TNF-α
levels are higher on the compression side of periodontal ligament fibroblasts than on the tension side, which may
influence RANKL expression during OTM [30]. Moreover, compression influences the osteodifferentiation of os-
teoblasts through the ClC-3 chloride channel in MC3T3-E1 cells, and regulates EphB4 and ephrinB2 expression
[13,31]. Furthermore, nfatc-1, trap, rank, cath-K, clc7, mmp-9, atp6i, dc-stamp, and oc-stamp, and integrin-αv and
-β3 are up-regulated by compression [32]. The effects of compression in OTM are dependent on the intensity of the
force applied and are influenced by caffeine [33].

Other forces
The application of high-frequency, low-intensity mechanical vibrations in the bone marrow mesenchymal stem
cells of D1-ORL-UVA mice induces adipogenesis and alters their morphology [34]. Both photobiomodulation and
low-amplitude high-frequency ultrasound enhance bone-fracture healing [35]. Low-intensity pulsed ultrasound (LI-
PUS) of appropriate strength and frequency significantly increases the bone tissue mineral density in mice. Thus,
LIPUS may be clinically useful for maintaining bone integrity [36-38]. The effects of LIPUS involve the up-regulation
of cyclooxygenase-2 and prostaglandin-E2, which are important in bone remodeling [39].

A brief introduction to miRNAs
Classified as ssRNA molecules comprising an average of 22 nts, miRNAs inhibit gene expression at the DNA, RNA,
and protein levels [40,41]. Almost 50% of miRNA genes are present in intergenic regions. Their expression is con-
trolled by their own promoters, or in the case of polycistronic miRNA clusters, shared promoters [42]. In cancer
[43], cardiovascular disease [41], COPD muscle dysfunction [44], osteoarthritis [45], and skin disorders [46], miR-
NAs play important roles as diagnostic biomarkers and molecular targetted therapies. miRNAs are regulated by,
amongst others, TCF, β-catenin, and dickkopf-related protein 1 (Wnt signaling pathway) [47-50], and by Smad pro-
teins (Smad7-Smad1/5/8-RUNX2 and Smad4-mediated pathways) [51-53]. miRNAs modulate the expression of hi-
stone deacetylase 4, forkhead box protein O1, Osterix (Osx), and growth/differentiation factor 5 during cell growth
and differentiation [54-56].

Some reviews have addressed the role of miRNAs in bone remodeling and summarized the molecular pathways
and specific proteins involved [57,58]. miRNAs function in the process of osteoporosis and bone resorption [58,59],
indicating their therapeutic potential in tissue engineering in terms of interfering with bone resorption [60]. However,
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these reviews focussed on the effect of miRNAs on bone remodeling in the absence of mechanical forces. Therefore,
we next discuss the role of miRNAs in bone formation induced by mechanical stimuli.

miRNAs are involved in the mechanical force modulated
bone metabolism
MCS
miRNAs and their target genes form a complex network, the balance of which can be altered by mechanical forces;
however, the underlying mechanism is unclear, despite the ever-increasing number of studies on the effects of MCS on
bone metabolism. Most of these studies have used miRNA microarrays. The effects of changes in miRNA expression
are mediated by proteins related to bone formation (e.g. RUNX2 and ALP). Overexpression of miR-503-5p in BM-
SCs attenuated stretch-induced osteogenic differentiation and decreased RUNX2 and ALP expression both in vitro
and in vivo [61]. miR-103-a, which functions as an endogenous attenuator of RUNX2 in osteoblasts together with
its target gene, pank3, was down-regulated during cyclical mechanical stretching-induced osteoblast differentiation,
which led to an increase in RUNX2 protein levels [62]. Application of stretching force to periodontal ligament stem
cells (PDLSCs) led to osteoblastic differentiation as well as changes in miR-1246, miR-5096, miR-638, miR-663,
miR-21, miR-4492, and miR-4734 expression. miR-1246 is a novel target of p53 that can activate nuclear factor of
activated T cells (NFAT) [63]. Moreover, activation of the NFAT pathway by RANKL attenuates osteoclast differen-
tiation [64]. Under tensile stress, miR-154-5p, by targetting the Wnt/PCP pathway, prevents osteogenic differenti-
ation of adipose-derived mesenchymal stem cells. miR-195-5p, which targets WNT3A, fibroblast growth factor 2
(FGF2), and bone morphogenetic protein receptor type IA (BMPR1A) [65] also inhibited osteogenic differentiation
in PDLSCs. Indeed, inhibition of endogenous miR-154-5p using an antisense oligonucleotide significantly promoted
osteogenic differentiation [66]. This may partly explain how mechanical stimulation activates the Wnt/β-catenin sig-
naling pathway and promotes bone formation [67]. Exposure of PDLSCs to stretching force decreased the expression
level of activin receptor type IIB (ACVR2B) via a direct interaction of miR-21 with the 3′-untranslated repeat se-
quence of ACVR2B mRNA [68]. ACVR2B can regulate osteoblasts directly and negatively; therefore, miR-21 plays
a role in osteogenic differentiation [69]. The expression of miR-138 in human bone marrow mesenchymal stem cells
was decreased by mechanical tension. miR-138 targets PTK2, which encodes focal adhesion kinase, a key mechan-
otransduction factor in osteogenesis. H19 may also be involved in this process [70].

Mechanical stretching down-regulates miR-500, miR-1934, miR-31, miR-378, and miR-331 expression and
up-regulates miR-1941 expression by activating NF-κB in C2C12 myoblasts. Thus, miRNA expression during
stretch-induced myoblast proliferation is dependent on NF-κB, which implies a mechanism for the intracellular trans-
mission of external mechanical stimuli [71]. miRNAs are closely related to the components of regulatory networks
involved in osteogenesis under mechanical stretching forces. miR-33, by acting through the miR-33-BMP3-Smad
signaling pathway, prevents proliferation of venous SMCs in response to arterial stretching. AgomiR-33 negatively
regulates BMP3 expression and Smad2 and Smad5 phosphorylation [72]. BMP3, which inhibits Smad signaling and
osteoblast differentiation, interacts with ACVR2B, as knockdown of endogenous ACVR2B in bone marrow stro-
mal cells ameliorated the BMP3-mediated suppression of osteoblast differentiation [73,74]. In human trabecular
meshwork cells, CMS induces the expression of miR-24, resulting in down-regulation of the subtilisin-like pro-
protein convertase Furin, which plays a major role in the processing of transforming growth factor β1 (TGF-β1).
Down-regulation of Furin leads to weight loss; reduced bone mineral density (BMD), serum osteocalcin, total cal-
cium, and intact parathyroid hormone levels; and an increased serum C telopeptide level. A similar finding was
reported in osteoporotic postmenopausal females [75-77].

FSS
Mechanical signals produced by FSS are sensed by mechanosensitive cells in bone and translated into biochemical
signals [78]. This process is highly dependent on the sensitivity of cells to mechanical forces, which is closely associ-
ated with the chemistry of cell scaffolds on the surface [25]. It is thought that interstitial fluid flow and short-term FSS
promote the terminal differentiation of pre-osteoblasts. Several miRNAs (miR-20a, miR-21, miR-19b, miR-34a and
-34c, miR-140, and miR-200b) influence RUNX2 and ALP expression by targetting PPARy, Bambi, Crim l, TGFBR,
SMAD3, PLAP-1, and TGFP1, which are key negative regulators of the BMP-SMAD-RUNX2-Osx signaling path-
way [79]. Exposure to FSS significantly up-regulates miR-132 expression in PDLCs. miR-132 has regulatory effects
through the PI3K/AKT/mTOR signaling pathway, as determined using the PI3K/AKT and mTOR signaling pathway
inhibitor, BEZ235, which blocks FSS-induced differentiation in human PDL cells [80]. Wang et al. [81] reported that
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after FSS miR-33-5p and its target gene Hmga2 negatively regulated osteoblast differentiation by modulating the pro-
liferation of stem cells and MSCs [82]. Although few studies have focussed on the roles of miRNAs in the effects of
FSS on bone formation, the signaling pathways and target genes involved have been identified. Further work should
clarify the relationships between mechanical force and miRNA expression levels.

Compressive force
Numerous studies have investigated the effects of compressive force on bone formation; however, few identified the
underlying mechanism(s) in osteoblasts and osteoclasts. Iwawaki et al. [83] assessed miRNA expression during com-
pressive treatment in MC3T3-E1 cells by microarray analysis. miR-494-3p was up-regulated after compression and
inhibited the proliferation of MC3T3-E1 cells by modulating the mRNA levels of fibroblast growth factor receptor
2 (FGFR2) and Rho-associated coiled-coil kinase 1 (ROCK1). Both FGFR2 and ROCK1 are predicted to be targets
of miR-494-3p and harbor miR-494-3p binding sites within the 3′-UTRs [83]. FGFR2 is a tyrosine kinase receptor
involved in cell proliferation and differentiation [84]. Activation of the RhoA/ROCK pathway stimulates osteogenic
and chondrogenic differentiation of mesenchymal stem cells [85]. The inhibition may be due to a reduced sealing
zone area, which is an osteoclast-specific cytoskeletal structure that contributes to osteoclast-mediated bone resorp-
tion [86]. Consequently, compressive force inhibits osteoblast proliferation by up-regulating miR-494-3p, which sup-
presses FGFR2 and ROCK1 expression. Expression of miR-29 in PDLCs is altered by compressive force, which af-
fects the expression of several genes encoding major extracellular matrix (ECM) components negatively. In addition,
Col1a1, Col3a1, and Col5a1 are direct targets of the miR-29 family in PDLCs [87]. Indeed, Col3 reportedly plays
a role in trabecular bone formation and maintenance by modulating osteogenesis [88]. In conclusion, compression
regulates alveolar bone formation and ECM homeostasis in periodontal ligament. Further studies should focus on
identifying the mechanism involved.

Microgravity
The metabolism of osteoblasts is influenced by microgravity. Human mesenchymal stem cell (hMSC) differentiation
into osteoblasts was suppressed in a ground-based, simulated microgravity environment, as indicated by the lack
of expression of ALP, collagen 1, and osteonectin [89]. However, the function of miRNAs in microgravity-induced
bone formation is unclear. miR-132-3p inhibits osteoblast differentiation and participates in the regulation of bone
loss induced by simulated microgravity by targetting the gene encoding E1A-binding protein p300, a histone acetyl-
transferase important for the activity and stability of RUNX2 [90]. Moreover, miR-33-5p partially attenuates the
microgravity-induced inhibition of MC3T3-E1 differentiation by targetting Hmga2; si targetting by miR-495 pre-
vents osteoblast proliferation and promotes apoptosis [81,91]. miR-103 inhibits osteoblast proliferation by suppress-
ing Cav1.2 expression in simulated microgravity [92,93].

Discussion
The relationship between mechanical force and miRNAs plays an important role in bone remodeling (Figure 1 and
Table 1). The regulatory effects of miRNAs depend on a complex molecular network (Figure 2). miRNA microarrays
are the most frequently used methods of detecting changes in miRNA expression. A mimic or inhibitor miRNA
can be used to identify the target genes of candidate miRNAs. Dual-luciferase reporters may enable identification of
combined sites of miRNAs on their target mRNAs. Wang et al. [81] assessed the relationship between miR33-5p and
its target gene, Hmga2, by co-transfecting inhibitor-33 with siRNA-Hmga2. This resulted in partial blocking of the
inhibitor-33-induced reduction in RUNX2, Osx, and ALP expression. Moreover, co-transfection of mimic-33 with
pc-DNA3.1-Hmga2 or blank pcDNA3.1 also reduced the magnitude of the mimic-33-induced increases in RUNX2,
Osx, and ALP expression [81]. Most studies on the effects of mechanical forces did not assess the effects of the intensity
of the force applied. In animal studies, miR-21 responded to orthodontic force in periodontal tissue in a dose- and
time-dependent manner [5]. The levels of miR195-5p differed at 24, 48, and 72 h after application of tension force
[65]. Therefore, the intensity of the mechanical force applied is also important. The optimum force can be different
amongst types of stem cells. This could lead to clinical use of inhibitors of miRNAs.

Irrespective of the amount of force used, MC3T3-E1 and PDLSC cells are the most frequently used in vitro studies
of the effects of mechanical forces due to their function in osteogenesis. However, whether this occurs in vivo is
unclear. miR-21 expression in hPDLSE scraped from tooth’s roots is altered by application of orthodontic force for 1
month [5]. Rat models of OTM were used to assess the effects of stretching force on miR-503-5p and miR-195-5p
expression [61,65]. Further in vivo studies are needed before miRNAs can be considered safe for clinical use.
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Figure 1. Different mechanical forces play different roles in bone remodeling

Figure 2. miRNAs mediate the process of bone remodeling as a post-transcriptional inhibitor
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Table 1 Studies about the role of miRNA in different forces induced bone metabolism

Mechanical force
miRNAs (express change with
mechanical force) Sample cells Functions Author

Compression miR-29↑ PDLSCs and ABCs Remodeling of alveolar bone
(Col1a1, Col3a1, and Col5a1)

Chen [87]

Compression miR-494-3p, miR-146a-5p, miR-210-3p,
miR-1247-3p ↑

MC3T3-E2 cells Osteoblast proliferation Iwawaki [83]

FSS miR-20a miR-21 miR-19b miR-34a, 34c,
miR-140 miR-200b↓

MC3T3-E1 cells Osteogenic differentiation Mai [79]

FSS miR-132↑ PDLSCs Osteoblast differentiation and
proliferation

Qi [80]

FSS miR-33-5p↑ MC3T3-E1 cells Osteoblast differentiation Wang [81]

MCS miR-34c-3p miR-326-5p ↑ miR-503-5p,
miR-324-5p, miR-188-5p, miR-345-3p,
miR-30a-5p, miR-29b-3p, miR-351-3p↓

RBMSCs Osteogenic differentiation and
bone formation.

Liu [61]

MCS miR-1246, miR-5096, miR-638, miR-663,
miR-21, miR-4492, miR-4734↑miR-107,
miR-423-5p and miR-3195↓

PDLSCs Osteoblast differentiation Wei [119]

MCS miR-103a↓ hFOB 1.19 cells Osteoblast differentiation and
bone formation

Zuo [62]

MCS miR-154-5p↑ ADSC Osteogenic differentiation of
ADSCs

Li [66]

MCS miR-21↑ PDLSCs Osteogenic differentiation Wei [68]

MCS miR-24↓ HTM cell Regulate the response to CMS Luna [75]

MCS miR-29↓ PDLSCs and ABCs Remodeling of alveolar bone
(Col1a1, Col3a1, and Col5a1)

Chen [87]

MCS miR-33↓ SMCs Cell proliferation Huang [6]

MCS miR-500, miR-1934, miR-31, miR-378,
miR-331, and miR-5097↓ miR-1941 ↑

C2C12 cells Cell proliferation Hua [71]

MCS miR-195-5p, miR-424-5p, miR-1297,
miR-3607-5p miR-145-5p, miR-4328, and
miR-224-5p↓

PDLSCs Bone formation Chang [120]

MCS miR-195-5p PDLSCs Osteogenic differentiation Chang [65]

MCS miR-451, miR-223, miR-486-5p↑
miR-1246, miR-1260, miR-141↓

PDLSCs Periodontal tissue homeostasis
Stoecklin-Wasmer
[121]

MCS miR-191*, miR-3070a, miR-M1-2-3p
miR-let-7e*, miR-3470a↑ miR-32, miR-33,
miR-5110, and miR-5121↓

MC3T3-E1 cells Osteoblast differentiation Guo [122]

MCS miR-138↓ hBMMSCs Osteogenic differentiation Wu [70]

Microgravity miR-103↑ MC3T3-E1 cells Osteoblast proliferation Sun [92]

Microgravity miR-103↑ MC3T3-E1 cells Osteoblast proliferation Sun [93]

Microgravity miR-132-3P↑ MC3T3-E1 cells Osteoblast differentiation Hu [90]

Microgravity miR-33-5p↓ MC3T3-E1 cells Osteoblast differentiation Wang [81]

Orthodontic force miR-21↑ PDLSCs of mice Osteogenesis of human
PDLSCs following OTM

Chen [5]

Abbreviations: ABC, alveolar bone cell; hBMMSC, human marrow mesenchymal stem cell; HTM, human trabecular meshwork.

Identifying the functions of miRNAs in the presence of mechanical force is problematic [94]. miRNAs play multiple
roles in osteoblasts and osteoclasts in the presence of MCS, FSS, compressive force, and microgravity. miRNAs may
regulate osteogenesis, which could be translated into novel therapeutic approaches for orthodontic conditions and
bone fractures, as well as for systemic diseases, such as osteoporosis. miRNAs may be useful as diagnostic biomark-
ers and therapeutic agents [95]. The expression levels of miRNAs are significantly altered in fractured bone tissue;
this is likely related to fracture healing. miR-196a-3, with its target gene fgf2, is associated with BMD [96]. miR-145
attenuates TNF-α-driven cartilage matrix degradation in osteoarthritis by suppressing mitogen-activated protein ki-
nase kinase 4 (MKK4) expression [97]. miR-21, miR-22, and miR-30 regulate H2S production, which plays a role
in bone formation as an osteoprotective factor [98]. In particular, miR-21 regulates osteoblastogenesis and osteo-
clastogenesis to prevent bone resorption [99]. miRNAs can modulate the activity of bone formation-related factors
and signaling pathways (e.g. BMPs and the NF-κB, RUNX2, Osx, and WNT signaling pathways). This facilitates the
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effects of other factors (e.g. Rorβ) on bone metabolism and enables these factors to function as regulators for treat-
ment of bone-defect diseases [100-102]. Although few studies have evaluated the efficacy of miRNAs in orthodontics,
miRNAs and miRNA inhibitors can be used clinically to regulate the tooth movement rate. The amount of secretory
miR-29 in gingival crevicular fluid was altered by orthodontic force, possibly due to the recruitment of osteoclasts
[103]. This suggested the utility of adding specific miRNAs to gingival crevicular fluid during orthodontic treatment
to change the tooth movement rate. Furthermore, use of exosomes as a tool for RNA transfer in therapeutic engineer-
ing has been reported [60], and exosomes from osteoclast precursors are involved in osteoclastogenesis [104]. Other
biomaterials that mediated miRNA delivery, such as electrospun nanofiber scaffolds, chitosan, and CaP coated with
PEGylated compounds, may be useful [105]. These technologies will lead to therapeutic applications of miRNAs as
regulators of bone remodeling induced by orthodontic forces.

Mechanotransduction is critical for maintaining bone strength and quality under physiological conditions [106],
and mechanical forces have been used to treat diseases involving bone loss. For instance, distraction osteogenesis is
used to treat orthognathic and bone defects caused by trauma or a congenital cleft palate. Dentoalveolar distraction
osteogenesis for canine retraction reportedly results in earlier tooth movement with minimal anchorage loss and
a reduced treatment time compared with traditional distalization [107]; this has been confirmed in other studies
[108-110]. Extracorporeal shockwave therapy is widely used in the treatment of bone-healing disturbances, vascular
bone diseases, femoral hip osteonecrosis, and bone resorption in periodontal disease [111-114]. A previous study
shed light on the relationship between mechanical force and bone metastasis in breast cancer [115]. Low intensity
vibration (LIV) can increase bone density and can be used in the treatment of osteoporosis and fracture [116-117].
Moreover, mechanical loading is widely used to treat craniofacial deformities such as jaw discrepancies and cranial
suture [118]. The above findings imply that modulating the expression levels of miRNAs could enhance the efficacy
of mechanical force in the treatment of bone diseases

Conclusion
The various effects of mechanical forces in bone remodeling are mediated by miRNAs as post-transcriptional regu-
lators. Although the underlying mechanisms are unclear, previous studies suggest the therapeutic potential of miR-
NAs [95-105]. The antisense oligonucleotides of some miRNAs, such as anti-miR-503, anti-miR-103, anti-miR-195,
may be used to promote the expression of RUNX2 and enhance osteoblast differentiation on the stretch side during
orthodontic treatment. Other miRNAs, such as miR-29, may be used to promote osteoclast recruitment following
compressive force. However, the dose and the time dependence of the effects of miRNAs should be investigated prior
to their clinical application. Optimum vehicles for the transfer of miRNAs are also needed. Although miRNA-based
orthodontic treatment is not yet available, this review may facilitate the development of novel miRNA-based therapies
for orthodontics and for treatment of bone diseases such as osteoporosis and fracture.
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