
Zheng et al. BMC Oral Health           (2023) 23:14  
https://doi.org/10.1186/s12903-022-02678-1

RESEARCH

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Open Access

BMC Oral Health

Low-level laser therapy prevents 
medication-related osteonecrosis of the jaw-like 
lesions via IL-1RA-mediated primary gingival 
wound healing
Yi Zheng1, Xian Dong1, Shuo Chen1, Yang He1, Jingang An1, Meng Liu3, Linhai He1,2* and Yi Zhang1* 

Abstract 

Background Medication-related osteonecrosis of the jaw (MRONJ) is a serious debilitating disease caused by anti-
resorption and anti-angiogenesis drugs, significantly affecting patients’ quality of life. Recent studies suggested that 
primary gingival wound healing may effectively prevent the development of MRONJ. This study aimed to evaluate 
the effects of low-level light therapy (LLLT) on promoting gingival wound healing in extraction sockets of MRONJ-like 
mice and preventing the occurrence of MRONJ. Furthermore, we explored underlying mechanisms.

Methods Mice were randomly divided into the Ctrl, Zol, and Zol + LLLT groups. Administration of zoledronate and 
tooth extraction of bilateral maxillary second molars were used to build the MRONJ model, and LLLT was locally 
administered into the tooth sockets to examine the effect of LLLT. Next, to explore the function of IL-1RA, we per-
formed LLLT with interleukin-1 receptor antagonist (IL-1RA) neutralizing antibody (named Zol + LLLT + IL-1RA NAb 
group) or negative control antibodies for tooth extraction in subsequent rescue animal experiments. Stereoscope 
observations, micro-computed tomography, and histological examination were conducted to evaluate gingival 
wound healing and bone regeneration in tooth sockets. The effects of LLLT on the migration capacities of zole-
dronate-treated epithelial cells were assessed in vitro.

Results LLLT promoted primary gingival wound healing without exposed necrotic bone. Micro-computed tomog-
raphy results showed higher bone volume and mineral density of the tooth sockets after LLLT. Histology analysis 
showed complete gingival coverage, obvious bone regeneration, and reduced soft tissue inflammation, with down-
regulated pro-inflammation cytokines, like interleukin-1 beta (IL-1β) and tumor necrosis factor-α (TNF-α), and up-
regulated IL-1RA expression in the gingival tissue in the LLLT group. The rescue assay further showed that the effects 
of LLLT promoting gingival wound healing and preventing MRONJ might be partially abolished by IL-1RA neutralizing 
antibodies. In vitro studies demonstrated that LLLT accelerated zoledronate-treated epithelial cell migration.

Conclusions LLLT might promote primary gingival wound healing and contribute to subsequent bone regeneration 
of the tooth extractions in MRONJ-like lesions via IL-1RA-mediated pro-inflammation signaling suppression.
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Introduction
Medication-related osteonecrosis of the jaw (MRONJ) 
is a severe adverse drug reaction associated with antire-
sorptive or antiangiogenic medication used to manage 
osteoporosis, lung, breast cancers, multiple myeloma, 
and cancer-related bone metastasis [1]. Patients are con-
sidered to harbor MRONJ if the following characteristics 
are present: (1) exposed bone in the maxillofacial region 
persisted for > 8 weeks; (2) current or previous treatment 
with antiresorptive or antiangiogenic agents; (3) no his-
tory of radiation therapy to the jaws or obvious meta-
static disease to the jaws [1]. This condition is usually 
challenging to treat and can  cause substantial pain and 
reduce the quality  of life. Also, the pathogenic mecha-
nisms of MRONJ remain elusive. Currently, the proposed 
pathophysiology hypostasis of MRONJ includes bone 
remodeling inhibition, infection, angiogenesis inhibition, 
immune dysfunction, gene factors, and so on [1, 2]. Most 
reported cases of MRONJ were caused by dental opera-
tions, like tooth extractions, intraoral surgical interven-
tion, and mucosal trauma [3, 4].

Recent studies have suggested bisphosphonates (BPs)-
induced impaired soft tissue healing as a potential mech-
anism of MRONJ. In 2017, Hasegawa et al. recommended 
the removal of any bone edges and mucosal wound clo-
sure as standard procedures in patients receiving bis-
phosphonates [5]. In 2019, we applied adipose-derived 
stem cells to prevent the onset of bisphosphonate-related 
osteonecrosis of the jaw in rabbits through transform-
ing growth factor-beta-1 (TGF-β1)-mediated gingival 
wound healing [6]. It has been reported that surgery in 
the early stages can ensure favorable outcomes in terms 
of mucosal integrity and lesion downstaging [7]. Moreo-
ver, a few other studies suggested promoting primary 
soft tissue healing or closure after surgical operation to 
effectively reduce the occurrence of MRONJ [8–10]. 
Therefore, well-healed soft tissue could be essential for 
preventing the onset of MRONJ.

Previous studies have found that photobiomodulation 
(PBM) and low-level laser therapy (LLLT) can regulate 
critical cellular pathways and energetic cellular metabo-
lism mediated by ATP, calcium, or reactive oxygen spe-
cies [11]. In addition, numerous studies have indicated 
that LLLT may be a potentially appealing biophysical 
non-invasive method that contributes to wound healing 
by establishing homeostasis, reducing pain and inflam-
mation, and boosting collagen accumulation, wound 
granulation, and revascularization [12, 13]. LLLT has 

been applied for treating various disease conditions like 
diabetic wounds [14, 15], bone repair [16], neuronal axon 
regeneration [17], esthetic reasons [18], and multiple 
dental therapies [19, 20]. However, whether LLLT can 
promote primary gingival healing under the influence of 
BPs and prevent MRONJ needs to be further explored.

The aim of the study was to evaluate the effects of LLLT 
on promoting gingival wound healing in extraction sock-
ets of MRONJ-like mice and preventing the occurrence 
of MRONJ. Furthermore, the underlying mechanisms 
were explored.

Material and methods
Patients
Five MRONJ patients, diagnosed according to AAMOS 
criteria [1], and five healthy controls were included in 
this study. MRONJ gingival samples and healthy gingi-
val samples were obtained during the MRONJ-related 
surgeries or orthopedic surgeries at Peking University 
School and the Hospital of Stomatology. The collec-
tion process was standardized. Gingiva samples around 
the tooth were collected from patients in both groups. 
Specifically, the gingival samples of the MRONJ group 
were collected around the MRONJ-involved tooth, and 
the control gingival samples were collected around the 
healthy tooth during orthopedic surgeries. The harvested 
tissues were fixed in 4% paraformaldehyde and subjected 
to further analyses.

The present study was approved by the Institutional 
Review Board (IRB) of the Peking University Hospital of 
Stomatology (PKUSSIRB-202170184). All enrolled indi-
viduals provided written informed consent. The clinical 
features of healthy controls and MRONJ patients of the 
study population are shown in Additional file 1: Table S2.

Antibodies and reagents
Zoledronate (Zol) was purchased from Sigma. An anti-
OCN antibody was purchased from Abclonal. Anti-IL-1β, 
anti-TNF-α, and anti-IL-1RA antibodies were acquired 
from Abcam. Alexa Fluor 488 secondary antibody was 
purchased from Abcam. IHC-secondary antibodies were 
bought from ZSGB-BIO. IL-1 RA neutralizing and nega-
tive control antibodies were purchased from R&D Sys-
tems. IL-1β ELISA kit was purchased from Biolegend. 
Masson’s trichrome stain kit was obtained from Solarbio. 
Tartrate-resistant acid phosphatase (TRAP) stain kit was 
purchased from Sigma-Aldrich. Cell counting kit-8 was 
purchased from Dojindo.
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Animals
A 6–8-week-old male C57BL/6N mice were acquired 
from the Beijing Vital River Laboratory Animal Tech-
nology Co., Ltd. All the animals were housed in a spe-
cific pathogen-free facility with a relative humidity of 
50 ± 1%, a temperature of 22 ± 1  °C, and a light/dark 
cycle of 12/12  h and were given standard chow and 
water. All animal experiments were approved by the Eth-
ics Committee of the Peking University Health Science 
Center (LA2018265) and carried out in compliance with 
ARRIVE guidelines.

Induction of an MRONJ‑like animal model and treatment
In order to reflect the similar clinical disease state of 
MRONJ and further explore its mechanism, we built the 
MRONJ mouse model and compared the mouse gingi-
val samples with human gingival tissues. Mice were ran-
domly divided into the following groups (n = 5/group): 
(1) Ctrl group, which received a vehicle and no local 
treatment on the extraction site; (2) Zol group, which 
received a zoledronate and no local treatment on the 
extraction site; (3) Zol + LLLT group, which received a 
zoledronate and LLLT on the extraction site.

To build an MRONJ-like mouse model, mice were 
administered with zoledronate (500  μg /kg, SML0223, 
Sigma, United States) intraperitoneally twice a week for 
four weeks according to our preliminary animal experi-
ments and previous studies [21]. After two weeks of 
drug treatment, tooth extraction of bilateral maxillary 
second molars was performed under general anesthe-
sia using pentobarbital (50 mg/kg, P3761, Sigma, USA). 
The ctrl group or the Zol group received no local treat-
ment for tooth sockets after tooth extraction. For local 
treatment, LLLT was locally employed to the tooth sock-
ets immediately post extraction. In the subsequent res-
cue animal experiments, mice were randomly divided 
into four following groups (n = 5/group): (1) Ctrl group, 
which received a vehicle and negative control antibod-
ies on the extraction site; (2) Zol group, which received 
a zoledronate and negative control antibodies on the 
extraction site; (3) Zol + LLLT group, which received 
a zoledronate, LLLT, and negative control antibodies 
on the extraction site; (4) Zol + LLLT + IL-1RA NAb 
group, which received a zoledronate, LLLT, and inter-
leukin-1 receptor antagonist neutralizing antibody (IL-
1RA NAb) on the extraction site. After tooth extraction 
and/or LLLT treatment, IL-1RA NAb (10 μg per mouse, 
AF-480-NA, R&D, USA) was topically injected into the 
extraction sockets using a micro sampler (91234910, 
Solarbio, China) in the Zol + LLLT + IL-1RA NAb 
group. Negative control antibodies (10  μg per mouse, 

AB-108-C, R&D, USA) were topically injected into the 
extraction sockets using a micro sampler for the Ctrl 
group, Zol group, and Zol + LLLT group. The local 
treatment was repeated 2 and 4  days after the tooth 
extraction. At two weeks post-extraction, all mice were 
euthanized by  cervical dislocation. Untreated healthy 
mice were euthanized as natural healing control. The 
maxillae were collected and fixed in 4% paraformalde-
hyde, after which the fixed maxillae were subjected to 
further analyses.

LLLT
We used a low-level laser (Velure S9 980 – Lasering) with 
the main wavelength of 980 nm to treat the tooth extrac-
tion. Three LLLT sessions were performed at the tooth 
extraction site at 0, 2, and 4 postoperative days. The irra-
diation parameters were as follows: 0.5  W power; spot 
size of 0.007829  cm2; continuous operation mode; power 
intensity of 63.87 W/  cm2. Irradiation was employed at a 
single point with the laser tip 5 mm above dental extrac-
tion sites for 45 s.

Micro‑CT analysis
The fixed maxillae were scanned using micro-computed 
tomography (microCT) (60  kV, 2  mA, J. Morita Corp., 
Kyoto, Japan) to assess hard tissue repair in the tooth 
extraction sockets. The area of interest was chosen, and 
bone mineral density (BMD) and bone volume/total vol-
ume (BV/TV) were quantified by three-dimensional (3D) 
bone morphometric software (SIEMENS, Munich, Ger-
many). Data were analyzed using Image J.

Histology
The fixed maxillae, including the extraction sockets, 
were decalcified in 10% EDTA, paraffin-embedded, 
and sectioned using a microtome (4  μm thick slices). 
Also, the fixed human gingival samples were sectioned 
using a microtome (4  μm thick slices). Hematoxylin 
and eosin (H&E) staining was then conducted for histo-
logical observations of the gingiva and tooth extraction 
sites (Solarbio, China). Masson’s trichrome staining was 
conducted to observe the collagen fibers following the 
instructions (Solarbio, China). TRAP staining was con-
ducted to indicate osteoclasts following the instructions 
(Sigma-Aldrich, USA).

Immunohistochemistry and immunofluorescence staining
Immunochemistry-paraffin (IHC-P) staining and immu-
nofluorescent Staining (IF) were conducted to study 
LLLT-induced primary gingival wound healing employ-
ing the following primary antibodies: anti-OCN (A6205, 
Abclonal); anti-IL-1β (ab9722, Abcam); anti-TNF-α 
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antibodies (ab1793, Abcam), anti-IL-1RA (ab124962, 
Abcam). For IHC-P staining, sections were deparaffi-
nized, rehydrated, and inactivated endogenous per-
oxidase activity with 3%  H2O2 in dark for 20 min. Then, 
sections were incubated in 0.01 M sodium citrate buffer 
solution at 98 °C for 20 min. After cooling to room tem-
perature, sections were incubated with anti-OCN, or 
IL-1β or anti-TNF-α antibodies overnight at 4  °C. Then, 
sections were stained with secondary antibodies (PV-
9001, ZSGB-BIO or PV-9002, ZSGB-BIO) and a DAB kit 
(ZLI-9018, ZSGB-BIO).

For IF staining, sections were handled as before and 
incubated with anti-IL-1RA antibodies overnight at 4 °C, 
after which they were stained with Alexa Fluor 488 sec-
ondary antibodies (1:200, Abcam) for 1  h and counter-
stained with DAPI (ZLI-9557, ZSGB-BIO). Images were 
acquired with an Olympus microscope. Images were ana-
lyzed using Image J.

RNA isolation and quantitative real‑time polymerase chain 
reaction (qRT‑PCR)
A high-throughput tissue crusher was used to lyse gin-
gival tissue into a paste. RNAs were extracted from mice 
gingival tissues with TriZol Reagent (15,596,026, Inv-
itrogen, Thermo Fisher Scientific, USA) and reverse-
transcribed (Takara, Japan) into complementary DNA 
(cDNA). The resultant cDNAs were used for the follow-
ing experiments. qRT-PCR was applied to detect the 
gene expressions with the ABI Prism 7500. The relative 
expression level of targeted genes was quantified with 
β-actin (used as the internal control) and calculated with 
the  2–ΔΔCT method. Additional file 1: Table S1 shows all 
of the primer sequences.

Enzyme‑linked immunosorbent assay (ELISA) for assessing 
IL‑1β from gingival tissues
A high-throughput tissue crusher was used to lyse gingi-
val tissue into a paste. Tissue supernatant of mice gingi-
val samples were collected. IL-1β in gingival tissues was 
detected with ELISA kits (432604, Biolegend) under the 
manufacturer’s instructions. Then, a microplate reader 
measured the absorbance at 450 nm (Elx808; BioTek).

Cell culture, viability, and migration assay
HaCaT cells, obtained from the central laboratory of 
Peking University Hospital of Stomatology, were cultured 
in DMEM (Dulbecco’s Modified Eagle’s Medium, Sigma-
Aldrich, USA) supplemented with 1% penicillin − strep-
tomycin (Gibco, USA) and 10% fetal bovine serum 
(Gibco, USA) in a humidified atmosphere at  37◦C in 5% 
 CO2. The effect of Zol on HaCaT cells was examined 
using the cell counting kit-8 (CCK-8) assay (Dojindo, 
Japan). HaCaT cells were seeded in 96-well plates at a 

density of 2 ×  103 cells per well and incubated with 200 
μL of the complete medium overnight to allow them 
to attach. Then, the medium was replaced with a fresh 
medium containing 1, 5, 10, 25, 50  μM Zol. After 24  h, 
10 µL CCK-8 solution was added to each well and incu-
bated for 2 h, and the absorbance of each well was meas-
ured at 450  nm absorbance. The effect of LLLT on the 
migration of HaCaT cells treated with Zol was assessed 
using the migration assay. In six-well plates, HaCaT 
cells were seeded and divided into the following groups: 
(1) Ctrl group: no drugs treatment; (2) Zol group: cells 
were incubated with 10 μM Zol for 24 h; (3) Zol + LLLT 
group: cells were incubated with 10 μM Zol for 24 h and 
then received LLLT (Velure S9 980 – Lasering, 980 nm, 
0.5 W delivering energy doses at 0.5 J/cm2 for 10 s). After 
incubation with 10 μM Zol for 24 h, a sterile 10-μl pipet 
tip was used to scratch three separate wounds through 
the cells. The cells were gently rinsed in PBS to remove 
floating cells and incubated in the medium at 37  °C, 5% 
 CO2/95% air environment. Images of the scratches were 
taken using an inverted microscope (Olympus, Lake Suc-
cess, NY) at 0, 24, 48, and 72 h of incubation. The wound 
closure percentage was quantified using Image J.

Statistical analysis
Statistical significance was evaluated by using Analysis of 
Variance (ANOVA) or the Student’s t-test with Graph-
Pad Prism 8.0 (GraphPad Software, USA). The data were 
presented as mean ± standard deviation (SD). If the two-
tailed P values were < 0.05 (*), < 0.01 (**), < 0.001 (***), 
and < 0.0001 (****), the difference was considered to be 
statistically significant.

Results
LLLT accelerates gingival wound closure and promotes 
socket bone regeneration in MRONJ‑like mice
Experiments were performed according to the schedule 
(Additional file  1: Fig.  1A). At 2  weeks post-extraction, 
stereoscope observations revealed that the tooth socket 
wounds were completely healed; consecutive mucosal 
covering was observed in both Ctrl and Zol + LLLT 
groups. At the same time, incomplete mucosal heal-
ing, lack of epithelial coverage, and exposed bone at the 
tooth socket wounds were seen in the Zol group (Addi-
tional file  1: Fig.  1B). MicroCT results further showed 
no obvious new bone regeneration at tooth-extraction 
sockets in the Zol group, while the Ctrl group and the 
Zol + LLLT group both showed ample newly formed 
bone (Additional file  1: Fig.  1C). The quantified data of 
microCT results indicated that BV/TV and BMD in alve-
olar sockets were significantly higher in the Ctrl group 
and Zol + LLLT group than in the Zol group (P < 0.05, 
Fig. 1D,E).
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Fig. 1 Effects of LLLT on MRONJ-like mouse model. A The study’s experimental protocols are depicted in this diagram. B Representative intraoral 
photos. (Ctrl: non-drug treatment group; Zol: treated with Zol group; Zol + LLLT: treated with Zol and LLLT group). Green dotted lines represent 
unhealed gingiva. C MicroCT reconstructed 3D images of tooth sockets. Green dotted lines represent tooth sockets. D, E Quantification of BMD and 
BV/TV in each group. F H&E staining shows tooth extraction sockets-wound healing in each group. Black dotted boxes represent magnified boxed 
regions. Green dotted lines represent unhealed gingiva. Green dot lines represent necrotic bones. Scale bar = 200 μm (upper), scale bar = 100 μm 
(lower). G H&E staining shows the human gingiva of healthy and MRONJ patients. Black dotted boxes represent magnified boxed regions. Black 
arrows represent inflammatory cells. Scale bar = 200 μm (upper), scale bar = 50 μm (lower). H Masson’s trichrome staining shows tooth extraction 
sockets-wound healing in each group. Yellow dotted boxes represent magnified boxed regions. Scale bar = 200 μm (upper), scale bar = 100 μm 
(lower). I Masson’s trichrome staining shows collagen arrangement in human gingiva tissues. Yellow dotted boxes represent magnified boxed 
regions. Scale bar = 200 μm (upper), scale bar = 100 μm (lower). (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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Histologically, the HE staining results showed intact 
epithelial coverage and adequate bone regeneration in 
sockets in the Ctrl and LLLT groups. In the Zol group, 
defective epithelial lining and necrotic bone with empty 
lacunae were observed (Fig.  1F and Additional file  1: 
Fig. S1A). In addition, Masson staining results showed 
more collagen deposition in the extraction sockets in the 
Zol + LLLT group compared to the Zol group (Fig. 1H). 
According to the results of TRAP staining, the Zol group 
had significantly fewer osteoclasts per bone marrow area 
(#/mm2), while LLLT application increased osteoclasts 
formation (Additional file  1: Fig. S1B and S1C). Addi-
tionally, immunohistochemical staining indicated sig-
nificantly increased osteocalcin (OCN) expression in the 
Zol + LLLT group than in the Zol group (P < 0.05, Addi-
tional file 1: Fig. S1D and S1E).

Moreover, MRONJ patients had more inflamma-
tory cell infiltration in the gingival tissue compared 
with healthy controls (Fig.  1G). Masson staining results 
showed that collagen arrangement was more disordered 
in MRONJ patients compared with healthy controls 
(Fig. 1I).

LLLT suppresses pro‑inflammation cytokines expression 
and enhances IL‑1RA expression in gingival tissues 
at 2 weeks post‑extraction
To investigate the mechanism of how LLLT promoted 
gingival wound healing, mice gingiva was harvested at 
11  days post-extraction. The qPCR results showed that 
IL-1β and IL-6 expression in the gingival tissues were 
downregulated, while IL-1RA expression was more 
upregulated in the Zol + LLLT group than in the Zol 
group (Fig. 2A–C). The results of ELISA further showed 
that LLLT decreased IL-1β expression in the gingival 
tissue compared with the Zol group (Fig. 2D). Immuno-
histochemistry indicated that IL-1β and TNF-α in the 
gingival tissue were upregulated in the Zol group com-
pared with the Ctrl group. However, these factors were 
downregulated in the LLLT group (Fig. 2E). In addition, 
patients’ gingival samples of MRONJ lesions showed 
higher expression of IL-1β and TNF-α than the healthy 
controls (Fig.  2F). Immunofluorescence also indicated 
that IL-1 RA was highly expressed in the LLLT group 
compared with the Zol group (Fig. 2G).

IL‑1RA deficiency abolishes the effects of LLLT to accelerate 
gingival wound repair in MRONJ‑like mice
A previous study has suggested that IL-1RA is impor-
tant for wound healing [22]. Herein, we found increased 
IL-1RA expression in MRONJ lesions after LLLT. Then, 
we examined whether IL-1RA has a major part in LLLT 
promoting gingival wound healing. LLLT was performed 

on the tooth extraction sockets with or without IL-1RA 
NAb. The in vivo results showed that IL-1RA NAb abol-
ishes the ability of LLLT to promote wound healing. 
Experiments were performed following the schedule 
(Fig.  3A). Stereoscope observations showed incomplete 
mucosal healing in the Zol + LLLT + IL-1RA NAb group 
compared with the Zol + LLLT group (Fig. 3B). MicroCT 
analysis further showed decreased bone formation, 
BMD, and BV/TV in the Zol + LLLT + IL-1RA NAb 
group compared with the Zol + LLLT group (P < 0.05, 
Fig.  3C–E). Histological analysis revealed that wound 
healing was delayed, and bone formation at the extrac-
tion site was reduced by using IL-1RA NAb (Fig.  3F 
and Additional file  1: Fig. S2A). The IL-1β and TNF-α 
expression increased again in the mouse gingiva in the 
Zol + LLLT + IL-1RA NAb group compared with the 
Zol + LLLT group, confirmed by immunohistochemistry 
(Fig. 3G, H). The above results suggest IL-1RA is involved 
in LLLT-induced primary gingival wound healing and 
MRONJ prevention.

LLLT promotes Zol‑treated HaCaT cells migration
A previous study has shown that BPs impede soft tissue 
wound healing by inhibiting epithelial cell prolifera-
tion and migration [23]. To detect the effects of Zol on 
HaCaT cells, we treated HaCaT cells with different con-
centrations of zoledronate, 1 μM, 5 μM, 10 μM, 25 μM, 
50 μM, and found that 10 μM was the lowest concen-
tration, at which HaCaT cells proliferation was inhib-
ited at 24  h (P < 0.05, Fig.  4A). Thus, we chose 10  μM 
Zol for the migration assay. The migration assay dem-
onstrated that Zol slows down the HaCaT cells’ migra-
tion rate, whereas LLLT significantly accelerates the 
migration rate at 24 h, 48 h, and 72 h (P < 0.05, Fig. 4B 
and 4C).

Discussion
Since the first report on MRONJ was published in 2003 
[24], different methods have been developed to prevent 
or treat MRONJ. Previous studies have suggested that 
promoting primary gingival healing or closure might 
be an effective method to prevent MRONJ [6, 8–10]. 
Methods to promote MRONJ soft tissue healing include 
platelet-rich fibrin injections, MSCs therapy, and so on 
[6, 25]. In this study, we found that LLLT might improve 
BPs-treated gingival wound healing via IL-1RA-mediated 
inflammation suppression. The primary wound closure 
provides a favorable environment for underlying bone 
regeneration of the tooth sockets and prevents the occur-
rence of MRONJ. Our results may help to clarify the 
mechanism of MRONJ and early clinical prevention of 
MRONJ by LLLT.
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Fig. 2 LLLT inhibited pro-inflammation cytokines, increased IL-1RA expression, and suppressed tissue inflammation in the gingiva. A–C Target gene 
mRNA expression levels in the gingival tissue of each group. D ELISA results of IL-1β levels in gingival tissue in each group. E Images of IL-1β and 
TNF-α IHC staining of the mouse gingival wound. Scale bar = 100 μm. F Images of IL-1β and TNF-α IHC staining of the human gingival wound. Scale 
bar = 100 μm. G Images of IL-1RA IF staining of the mouse gingival wound. White dotted lines represent the dividing line between the epithelium 
and the connective tissue. Scale bar = 50 μm. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)



Page 8 of 14Zheng et al. BMC Oral Health           (2023) 23:14 

In MRONJ lesions, BPs-induced soft tissue toxicity 
impairs the functions of keratinocytes and fibroblasts 
and leads to delayed wound healing, which is a potential 
mechanism of MRONJ [9, 26]. Furthermore, periodontal 
ligament stem cells (PDLSCs) have remarkable regenera-
tive potential and contribute to periodontal tissue regen-
eration [27]. Zoledronate might impair PDLSC’s viability, 
proliferation, and induce apoptosis, thus affecting gingi-
val tissue healing [28, 29]. Oral mucosa acts as a defense 
against pathogenic bacteria or fungi for underlying 
bones. It also provides vital cytokines like bone morpho-
genetic proteins (BMPs), fibroblast growth factor (FGF), 
nuclear factor kappa-B ligand (RANKL), and TGF-β1 
for bone metabolism [6, 9]. Loss of protection of intact 
mucosal coverage allows bacteria to invade the bone tis-
sue, causing an inflammatory response, which, in turn, 
results in the development of osteonecrosis [30].

Primary gingival wound healing after tooth extraction 
can effectively reduce the onset of MRONJ [10]. Our 
previous studies suggested that TGF-β1-mediate early 
wound closure could promote the underlying bone repair 
process and prevent the occurrence of MRONJ [6, 31]. 
Moreover, other studies reported that LLLT could effec-
tively promote wound healing, particularly in resistant 
wounds such as diabetic wounds [14], and inflammation-
related wounds [32]. In diabetic wound healing, LLLT 
increases the serum anti-inflammatory cytokine IL-10 
level and reduces the pro-inflammatory cytokines like 
IL-1β, and TNF-α levels in diabetic animals, restrict-
ing sustained inflammation and regulating the immune 
response [15]. Meanwhile, few studies suggested that 
LLLT promotes MRONJ wound healing [33–35]. In this 
study, we further found that LLLT promotes primary gin-
gival wound healing and prevents MRONJ by reducing 
soft tissue inflammation, enhancing epithelial cell migra-
tion, and collagen formation.

IL-1RA might exert an important function in LLLT-
meditated primary gingival wound healing. The inflam-
matory response has an important role during the 
wound-healing process. The excessive inflammatory 
response may disrupt normal tissue architecture and 
function and lead to impaired wound healing [36]. IL-1β 

is one of the typical inflammation factors and a crucial 
mediator of the inflammatory response, such as mito-
gen-activated protein kinase (MAPK) signaling and acti-
vating nuclear  factor-kappa  B (NF-κB) pathways, which 
controls the transcription of inflammatory genes, like 
IL-1, IL-6, TNF-α [37–39]. Many studies have reported 
that pro-inflammation cytokines like IL-1β, TNF-α, and 
IL-6 are over-expressed in the MRONJ lesions [40–42]. 
IL-1β overexpression prolongs the inflammatory stage 
and delays the soft wound healing, while IL-1RA inhib-
its the IL-1β-driven downstream signaling by combining 
the IL-1 receptor competitively and effectively blocking 
the IL-1β–driven inflammatory signals [43, 44]. Previous 
studies also suggested IL-1RA deficiency leads to delayed 
wound healing, while IL-1RA-upregulation promotes 
wound healing by inhibiting pro-inflammation effects 
[45, 46]. Our results indicated that LLLT might effectively 
suppress tissue inflammation by up-regulating IL-1RA 
expression, down-regulating IL-1β, TNF-α, and IL-6 in 
the gingival tissue, which increases collagen formation, 
promotes early gingival wound healing, and prevents 
MRONJ (Fig. 5).

Interestingly, we also found that LLLT improves bone 
regeneration and bone remodeling process. The histol-
ogy results showed that LLLT might rescue the acti-
vated osteoclasts and increase the expression of OCN 
in the bone tissue. Moreover, the IL-1RA neutralizing 
antibody dramatically eliminated the effects of LLLT 
in promoting primary gingival wound healing. The res-
cue assay suggested that IL-1RA has a vital role in the 
LLLT-mediated prevention of MRONJ. Several stud-
ies found IL-1RA could enhance epithelial cell/ MSCs 
proliferation and migration capacities [47, 48]. Con-
sistently, our in vitro studies confirmed that LLLT sig-
nificantly accelerates Zol-treated HaCaT cell migration. 
However, the mechanisms of LLLT increasing IL-1RA 
expression are not clear. The increase of IL-1RA may be 
due to the direct stimulation of LLLT or the subsequent 
response caused by LLLT-mediated elevation of other 
cytokines, like TGF-β1 or IL-4 [49–55]. Studies have 
also suggested that LLLT can upregulate IL-1RA in the 
keratinocytes and fibroblast co-culture system [56], or 

(See figure on next page.)
Fig. 3 Application of IL-1RA NAb impairs the capacity of LLLT to promote gingival wound healing. A The study’s experimental protocols 
are depicted in this diagram. B Representative intraoral photos. (Ctrl: non-drug treatment, but treated with negative control antibodies 
group; Zol: treated with Zol and negative control antibodies group; Zol + LLLT: treated with Zol, LLLT, and negative control antibodies group; 
Zol + LLLT + IL-1RA: treated with Zol, LLLT, and IL-1RA NAb group). Green dotted lines represent unhealed gingiva. C MicroCT reconstructed 3D 
images of tooth sockets. Green dotted lines represent tooth sockets. D, E Quantification of BMD and BV/TV in each group. F H&E staining shows 
tooth extraction sockets-wound healing in each group. Black dotted boxes represent magnified boxed regions. Green dotted lines represent 
unhealed gingiva. Scale bar = 200 μm (upper), scale bar = 100 μm (lower). G, H Images of IL-1β and TNF-α IHC staining of the mouse gingival 
wound. Scale bar = 100 μm. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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Fig. 3 (See legend on previous page.)
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increase salivary levels of IL-1RA in the periodontitis 
model [57].

There are still some limitations in the present study. 
There are many factors affecting the healing process of 
the MRONJ extraction sockets, like angiogenesis, bone 
remodeling, and immune regulation [58–60]. In our 
study, we focus more on how LLLT promoted primary 
gingival wound healing and prevented MRONJ; how-
ever, more research is required to fully understand the 
comprehensive effects of LLLT.

Conclusions
LLLT can improve primary soft tissue healing by 
IL-1RA-mediated tissue inflammation inhibition and 
epithelial cell migration, thus promoting underly-
ing osseous tissue repair and preventing the develop-
ment of MRONJ. This study sheds new light on how 
LLLT helps to prevent MRONJ and offers new ideas 
and strategies for treating other disorders caused by an 
IL-1β-mediated excessive inflammatory response in the 
wound.

Fig. 4 LLLT promotes Zol-treated HaCaT cell migration. (A) CCK8 showed the effects of Zol at different concentrations on HaCaT cell proliferation at 
24 h. (B) The migration assay of HaCaT cells treated with Zol and LLLT. Scale bar = 200 μm. (C) Quantification of the migration rate at 24 h, 48 h, and 
72 h. (*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001)
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Abbreviations
MRONJ  Medication-related osteonecrosis of the jaw
BPs  Bisphosphonates
LLLT  Low-level light therapy
PBM  Photobiomodulation
IL-1RA  Interleukin-1 receptor antagonist
IL-1β  Interleukin-1β
TNF-α  Tumor necrosis factor-α
Zol  Zoledronate
microCT  Microcomputed tomography
BMD  Bone mineral density
BV/TV  Bone volume/total volume

HE  Hematoxylin and eosin
TRAP  Tartrate-resistant acid phosphatase
OCN  Osteocalcin
ELISA  Enzyme-linked immunosorbent assay
NAb  Neutralizing antibody
TGF-β1  Transforming growth factor-beta-1
BMPs  Bone morphogenetic proteins
FGF  Fibroblast growth factor
RANKL  Nuclear factor kappa-B ligand
MAPK  Mitogen-activated protein kinase
NF-κB  Nuclear factor-kappa B
PDLSCs  Periodontal ligament stem cells

Fig. 5 The schematic hypothesis of the function of LLLT to promote wound healing. Our results suggest that LLLT decreases IL-β and IL-6, and 
increases IL-1RA at the gingival wound, promoting wound healing and bone regeneration. The IL-1 signaling pathway is initiated when IL-1α or IL-1β 
binds to the members of the IL-1R1 family, which recruits MyD88, IRAK, and TRAF6 to activate NF-κB and MAPK and then controls the transcription 
of several inflammatory genes. IL-1RA can suppress this interaction competitively
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